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Introduction Bayesian Model Selection (BMS)
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Simultaneous multi-channel single unit recordings are a key tool to investigate neural function. We We are interested to know which model M,, with £ =1, 2 or 3 different spikes has maximum likelihood oo 5
have developed a simple algorithm to automate the process of finding extracellular single units in given A;(?) =data (red cluster points inFig. 3,4band 5b). 1000 b5 2o & o
real time using a multi-channel microelectrode drive. The algorithm uses brief (1s) periods of P00 5 g A © .
recording to assess recording quality. The microelectrode is advanced until well isolated units are We calculate the posterior probability P(Mk\dam) using a Bayesian Model Selection (BMS) based on S SRS - o o g°
detected. Bayes’ theorem: g 2% o ° o g 5 O _ o 009
: : _ = O O
The autonomous algorithm consists of four steps: ] P(M )P (data|M ,) | P(M,) - % g © . o S o " 0 05 415 2 s
1. Detection and alignment of spike waveforms using thresholding; Pl fdeie) = P(data) » assuming P(data) | - - S © 8o - SRR e
. : : : . : . . O O © O
2. Dimensional redootlon of the differences between noisy spike waveforms using Principal where the const. is determined by the normalization constraint: 4000 | - O 0
Component Analysis (PCA); ; o o i .
- . . . . . _ O
3. Determining the number of different single-units (Bayesian model selection); > P(M |data)=1 5000 « © . 5
4. Finally, a qualitative measure of unit separation is estimated, also using a Bayesian approach. _ o _ _ © 00 0o
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' g P(daz‘a‘Mk ) — I P(@ . ‘Mk )P(da ta‘e . Mk )d@ ; Simulation with 100 neurons. We can see how the electrode ( black At this depth, the electrode does not record any single-unit acivity
0.02 = line) at depth = 127 um is far away from neurons. and the software decided to move the electrode down.
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= where P@©,M,) and P(datalp,,M,) are the prior probability and likelihood function of oo o
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- We assume auniform  r@,/,) = = ,and P(datalp,,M,) isdeterminated by : = * o © ©° @8
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Fig. 1. Simulated signal (1 s) and Fig. 2. Alignment of spike Fig. 3. Pairwise differences of: — O 3000 o 4 o O O O o0 .
detection of spikes using waveforms. spike waveforms (red points) and = o © 5 5
thresholding. noise (blue points) compressed to P(data,d,, M,, M,, or M, O — = ' A et N e tea a0
two dimensions using PCA. 4000 - o © E o %3
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Pairwise differences of the spike waveforms ~ S 000 © ! S 1
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atain Flg' 3are obtained by all the differences of the Splke waveforms: Rata, =&, &), 0,,M,) = MAdata,,0,)+1,,data,, i+, 6)+A,Qdata,, f—,,,6), A=1-2h, and 6,=0 .\, 1,) (free parameters=3) -400 -200 0.00 200 400 Single unit activity is detected and the software stops electrode
— — — — — — — At a depth of 1221 um the electrode is very close to one neuron. movement. The Signal-Noise-Ratio (SNR) right bottom plots the rise
A .y (f) — W (t) — W (f) — S (f) + N (f) — (S (t) + N : (t)) ~ . above the SNR threshold (redline), and the blue circles show detection
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where W (f)isthei- th recorded splke waveform comprising the underlylng spike shape S (1) 3 o L L
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In Fig. 3, the differences ofthe noise splke waveforms A (t) g'i 20 g 3,
and the dlfferences of the noise A’W(t) exhibit the same distribution. Se arati on M easure < < 2
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Ifthe spikes come from two (Fig. 4) andthree (Fig.5)differentcells, A ;(¢) will show 0O 5 10 15 20 30 40 0 0
multiple clusters: . _ L _ SNR
To decideif two orthree spikes are cleanly discriminable or not, we use a separation measure: 100
o =3 oMM It v () In our analysis we run 100 simulations of 60 | —
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Fig. 4a. Spike waveforms from two Fig. 4b. Pairwise differences between the 0.04 spike waveforms used in every simulation.
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